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Abstract – When quickly detaching an elastomer from a counterface, viscoelasticity dramatically
increases the perceived adhesion relative to its adiabatic or equilibrium value. Here, we report
simulations on the sticking contact between a rigid cylinder and a viscoelastic half space revealing
a maximum in the work of separation at intermediate pull-off velocities. Maximum tensile forces
yet increase monotonically with the pull-off speed and the crack tip speed in accordance with the
Persson-Brener approach. As predicted theoretically, the fracture mode transitions from interfacial
crack propagation to quasi-uniform bond breaking with increasing range of adhesion.
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Introduction. – We all know since childhood that
the pain experienced when tearing off a bandage is small
when pulling either very slowly or very quickly. In be-
tween these two limits, it hurts. One important reason
for this phenomenon certainly is that breaking an adhe-
sive, viscoelastic interface is crucially affected by the in-
terplay of the interfacial energy, the maximum tension of
the media in contact, the frequency dependence of their
mechanical properties, and the pull-off velocity [1,2]. Sim-
ilar comments can be made about the rupture and wear
of rubber [3,4] as well as the adhesion, cohesion, and
friction involving related elastomers including, for exam-
ple, pressure-sensitive adhesives [5], tapes [6], or carti-
lage [7]. Unfortunately, even the most elementary linearly
viscoelastic, adhesive interfaces (for which fibrillation, cav-
itation, and other complex phenomena that matter for the
bandage example [4,5] can be neglected) defy a simple de-
scription of their dynamics.
The critical quantity in a viscoelastic fracture problem

is the energy release rate G(v). It is the energy per unit
area needed to advance a crack by a unit length as a func-
tion of the crack tip speed v. Traditionally [1,8–14], it is
attempted to determine G(v) by solving a self-consistent
equation, which first needs to be derived for each combina-
tion of a given frequency-dependent elastic modulus E(ω)
and cohesive-zone model (CZM). The latter states how

(a)E-mail: martin.mueser@mx.uni-saarland.de (corresponding
author)

adhesive stress changes locally with the interfacial separa-
tion, or gap g. However, as pointed out by de Gennes [15],
certain universal features should apply given that the
stress near crack tips generally obeys σ(r) = K/

√
2πr, a

distance r away from the crack tip [16], where K is called
the stress-intensity factor, see also fig. 1(c) —other pan-
els of that figure are discussed in the model section, while
mathematical symbols are summarized in table 1. In the
immediate vicinity of a fast moving crack and very far
away from it, the contact mechanics is similar to that of an
adiabatically moving crack, however, assuming the high-
and low-frequency elastic modulus, E1 and E0, at small
and large r, respectively. Unfortunately, the interesting,
non-trivial intermittent region is where most energy can
be dissipated, whereby this region may predominantly ac-
count for the increase of G(v) compared to its quasi-static
or adiabatic value G0.

Almost two decades ago, Persson and Brener [17] sug-
gested an approximate solution for a broad class of vis-
coelastic, adhesive contact problems. A central benefit of
their approach is that a relatively simple self-consistent
integral equation needs to be solved, in which E(ω) can
be arbitrarily complex without obstructing the calculation
of G(v). It yet yields a similar speed dependence of the
fracture energy as that determined from traditional solu-
tions [11,13,18] of simple rheological models.

Neither the traditional nor the Persson-Brener approach
have so far been verified by rigorous numerical solutions
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Fig. 1: (a) Displacement field u(x) (blue) and interfacial stress σ(x) (red) in units of the maximum stress σc for the system
with a contact radius R0 = 64 and the ratio E1/E0 = 100 formed by large- and low-frequency elastic modulus. Zooms (not to
scale!) into (b) contact geometry relative to the right crack tip located at xrc and (c) interfacial stress relative to the left crack
at xlc. The elastic stress fields, defined as the equilibrium elastic stress for a fixed u(x), are shown for comparison in panel (c).
The lateral coordinate x is normalized differently in different panels.

Table 1: List of most important symbols used in this letter.

Δγ surface energy per unit area
μT Tabor parameter
σ(x) stress field
σc max. tensile stress of cohesive zone model
τ relaxation time
ω angular frequency
ρ0 flat-punch radius
E(ω) freq.-dep. Young’s modulus
E0, E1 Young’s mod. at low and high freq.
E∗ contact modulus
Fp(v) velocity-dependent pull-up force
G0, G(v) static and vel.-dep. energy release rate
K stress-intensity factor
R0 radius of curvature of rigid indenter
V (g) gap-dep. interaction potential per unit area
W , W (v) (vel.-dep.) work of separation
a0, aK static and K-dep. crack tip radius
d displacement of indenter
g, g(x) (local) interfacial separation or gap
gc range of adhesion, or cut-off gap
q wave number
q0, qc(v) static and vel.-dep. cut-off wave number
qs stiffness wave number
r distance from crack tip
t time
u(x) displacement field
v crack tip velocity
vp pull-up velocity
w, w(v) static and vel.-dep. cont. width at max(Fp)

over a meaningfully large parameter range. One purpose
of this article is to fill this gap. A further, equally impor-
tant question addressed here is how viscoelasticity affects
the snap off in single-asperity contacts. This includes a

test of the prediction [19,20] that fracture modes change
from interfacial crack propagation to quasi-uniform bond
breaking at small scales and an analysis of how the work
of separation depends on the pull-off velocity.

Model. – The model studied in this work is depicted
in fig. 2. It assumes a common, three-element viscoelastic
solid, for which

E0

E(ω)
=

E0

E1
+

(
1− E0

E1

)
1

1− iωτ
. (1)

Here, E0, E(ω), and E1 are low-, arbitrary-, and high-
frequency moduli, respectively, while τ is the relaxation
time.
The interaction potential per unit surface area, V (g),

associated with the contact formation is described by a
recently proposed CZM [21], for which V (g) is zero if the
gap g exceeds the cut-off gap gc and

V (g) = −Δγ ×
{[

1− (π g/gc)
2/2

]
, if g < 0,

[1 + cos(π g/gc)] /2, if 0 ≤ g < gc
(2)

otherwise. Here, Δγ is the interfacial binding energy
gained when cylinder and elastomer touch (g = 0). The
maximum tensile stress of our CZM is σc = πΔγ/(2 gc).
An advantage of the employed CZM over commonly used
Dugdale-type models is that ours is twice differentiable, as
real interactions are, whereby numerical solutions of the
dynamics are quite robust.
Simulations were conducted using a house-written

Green’s function molecular dynamics (GFMD) code,
which has been described numerous times before, see, e.g.,
appendix 2 in ref. [22]. However, the used propagator was
changed in order to reflect the dynamics of the standard
three-element model leading to a similar approach as that
pursued by Bugnicourt et al. [23]. To improve numerical
stability, the interfacial stress and its time derivative, that
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Fig. 2: (a) Three-element viscoelastic model. The high-
frequency modulus E1 = E(ω → ∞) and the viscosity η = 1/τ
are indicated. The low-frequency modulus follows from E1 and
E2 according to E0 ≡ E(ω = 0) = E1E2/(E1 + E2). (b) The
wall-wall interaction potential (per unit surface area) used in
the numerical simulations.

is, the r.h.s. of eq. (4) in ref. [23], were low-pass filtered as
described elsewhere [24]. For an alternative way of simu-
lating the used viscoelastic model with GFMD, we refer
to ref. [25].

The length of the periodically repeated simulation cell
was generally set to L = 4R0, where the contact radius R0

took the values R0 = 1, 8, and 64. Note that three vari-
ables can be used to define the unit system. Throughout
this work, we assume a unit system in which the contact
modulus E∗

0 ≡ E0/(1− ν2), τ , and the smallest R0 define
the units of stress, time, and length, respectively. Here, ν
is the Poisson ratio, which is assumed to be independent
of frequency. Real units can be produced by setting, e.g.,
E∗

0 = 5MPa, γ = 50mJ/m2, in which case the unit of
length would be 10 nm. From a continuum perspective,
it might be more meaningful to state the Tabor parame-

ter, which would read μT = 3

√
R0σ3

c/(E
∗
0
2Δγ), if the ratio

Δγ/σc was used as the range of interaction in the common
definition of μT. With our maximum tensile stress, σc, the
Tabor parameters realized in this study would range from
μT ≈ 4 for R0 = 1 to μT ≈ 16 for R0 = 64, which could be
classified as medium- to short-ranged adhesion. In com-
parison, Afferante and Violano studied effective surface
energies in viscoelastic Hertzian contacts in the limit of
long-range interaction, i.e., for μT ≈ 1/3.85, and the fixed
ratio E1/E0 = 10 in a compelling, recent study [18].

Throughout this manuscript, E∗
0 = 1 and Δγ = 0.01.

Moreover, space is always discretized into elements of
length Δx = 1/1024. This motivated the peculiar value
of gc = 0.0175156, which was chosen as to make the
maximum elastic stiffness, κmax

el ≡ max(q)E∗
0/2, i.e., the

stiffness of the surface undulation with the largest wave
number, exactly ten times the maximum curvature of
V (g). As a consequence, the distance between the point
of maximum tension and the points where the numerically
determined static stresses or displacement fields closely
approach their continuum solutions, be it inside or out-
side the contact, is also of order ten and even larger at
high crack tip speeds. Due to such a fine discretization,
lattice trapping is suppressed.

To further illuminate the model, fig. 1(a) shows the over-
all contact geometry and the stress field for a force-free
static contact and panel (b) a zoom into the displacement
field u(x) including our determination of the static crack
tip radius acr. Moreover, fig. 1(c) confirms that the inter-
facial stress σ(x) in the vicinity of the crack tip obtained
at different crack tip velocities v can be superimposed
when scaling the distance from the crack tip with the ra-
tio qc(v)/q0 deduced from eq. (3). For v = 0, the elas-
tic stress, σel(x) defined as the inverse Fourier transform
of qE∗

0 ũ(q)/2, superimposes with σ(x). At intermediate
v, σel(x) is still relatively close to σ(x) in the immediate
vicinity of the crack tip and approaches it asymptotically
at large distances from the crack tip. However, elastic
and interfacial stress fields differ substantially at large v.
Since relaxation is driven by the difference between elastic
and interfacial stress, dissipation occurs predominantly far
away from the cracks in the latter case.

Theory. – In this section, we sketch the Persson-Brener
theory [17]. The reader is referred to the original litera-
ture for a detailed derivation. In addition, we identify
the analytical solution for the three-element model within
the theory and discuss the relation between various useful
length scales.
To quantify the viscous energy loss for a steadily moving

crack, Persson and Brener [17] argued that the stress sin-
gularity near the crack tip is cut-off by the local maximum
tension σc. This made them introduce a speed-dependent
wave number cut-off qc(v), above which the elastomer no
longer noticeably deforms. The cut-off reveals itself exper-
imentally through a blunting of the crack tip at large crack
tip speeds. It can be obtained through the self-consistent
equation

qc(v) = q0 {1− I(v qc(v))}, (3)

where the static cut-off wave number q0 = qc(0), whose
relation to other characteristic distances and wave num-
bers is discussed at the end of this section, is the only
adjustable parameter, and where

I(ω) =
2

π

∫ 1

0

dx

√
1− x2

x
Im

{
E0

E(xω)

}
. (4)

From this, G(v), which turns out inversely proportional to
qc(v), can be deduced through

G(v) qc(v) = G0 qc(0). (5)

The imaginary part of E∗/E(ω) can be easily evaluated
for the three-element model depicted in fig. 2 and the re-
sult be inserted into eq. (4) to yield the integral

I(ω) =

(
1− E0

E1

)
2

π

∫ 1

0

dx
√
1− x2

ωτ

1 + (ωτx)2
. (6)

It has the solution

I(ω) =

(
1− E0

E1

) √
1 + (ωτ)2 − 1

ωτ
. (7)
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As a consequence, the self-consistent equation to be solved
for a standard, three-element half space becomes

qc(v)

q0
= 1−

(
1− E0

E1

) √
1 + q2c (v)v

2τ2 − 1

qc(v) v τ
(8)

after substituting ω = v qc(v). In principle, this is a
quadratic equation in qc(v) and therefore analytically solv-
able. However, the coefficients are cumbersome so we
found a self-consistent solution of eq. (8) for qc(v) to re-
main most convenient.
Quite a few characteristic distances or wavelengths and

their corresponding wave numbers can be defined. Differ-
ent distances and wavelengths should be generally related
by conversion factors of order unity times (2π)±1. It may
be beneficial to introduce them and to identify their mu-
tual dependencies for our CZM defined in eq. (2). We
expect the resulting conversion factors to be similar for
other CZMs.
The first wave vector to be introduced is the one at

which the stiffness κel(q) ≡ qE∗
0/2 of a surface undulation

with wave number q is equal to the maximum negative
curvature of the interaction potential,

qs = 2 max(−V ′′(g))/E∗
0 . (9)

For our CZM, the term qs, which we call stiffness
wave number1, can be calculated from max(−V ′′(g)) =
(π/2)2Δγ/g2c and σc = (π/2)Δγ/ gc so that

qs =
2σ2

c

E∗
0 Δγ

. (10)

Modes with wave numbers q � qs will behave as in the
continuum/short-range-adhesion limit, while those with
q � qs are too stiff to be distorted by the interfacial inter-
actions. A motivated guess for the used conversion factor
αcs ≡ qc/qs is provided further below.
We note in passing that eq. (9) is not directly applicable

to CZMs for which the associated gap-dependent potential
energy density V (g) is not twice differentiable or assumes
a “funky” shape. Thus, the wave number cut-off qc used in
the Persson-Brener theory must be of order qs. However,
for conventional CZMs, like the Dugdale model, eq. (10)
should be a good approximation.
Another characteristic length is the distance aK from

the crack tip beyond which the stress field approaches the
asymptotic σ(r) = K/

√
2πr relation, where K is the so-

called stress-intensity factor. A convenient measure for aK
can be deduced from numerical data by realizing that the
divergence of the stress for small r can be shielded with

σ(r) ≈ σc
√
aK

(r2 + a2K)
1/4

. (11)

1The terms stiffness wave vector, and the corresponding stiffness
distance as = 2π/qs may appear odd. However, due to the fact that
the words characteristic, cohesive, contact, crack, critical, and cross-
over all start with the letter c and three out of those six words even
start with cr, the need for unconventional variable names arose.

This relation yields the correct σ(r) = K/
√
2π r asymp-

totics for r � aK , while turning σ(0) = σc into a
maximum. Data as that shown in fig. 1(c) gives a first
estimate of aK ≈ 0.4 as. Comparing this result to eq. (19)
in ref. [17], it follows for the static stress-intensity factor
that aK = a0 ≡ 2π/qc(0), where a0 is the static crack
tip radius. However, for the simulation presented further
below, we did not gauge a0 on the static stress field. We
found it more effective to set it such that it accurately
reproduces the linear-response dissipation of the receding
cylinder at extremely small velocities, which was achieved
with the numerical value of a0 = 0.019. This number
is close to the shown crack tip radius of acr = 0.03 and
translates to a0 = 1.95 as.

Results for cylinders. – Analytical results predict
that the maximum tensile force, also called the pull-off
force, Fp, satisfies Fp = (27π G2 E∗

0 R0/16)
1/3 [26–28].

Treating the breaking of the adhesive bonds between the
solids as the propagation of an opening interfacial crack
also at the moment of pull-off, we therefore expect

Fp(v)

Fp(0)
=

(
G(v)

G0

)2/3

, (12)

where v is the crack tip velocity at the moment when
the normal force reaches its maximum. In fact, fig. 3 re-
veals close agreement between simulation and theory for
how the pull-off force increases with pulling speed. The
static pull-off forces, Fp(0), needed to accurately normal-
ize Fp(v) were deduced from mass-weighted GFMD sim-
ulations [29] using very small vp. They deviated at most
by 0.1% from the just-stated, quasi-static continuum ex-
pression for Fp.
Persson-Brener theory (full lines in fig. 3) match within

the numerical precision in the linear-response regime at
small velocities. This linear-response regime arises as a
consequence of how the modeler (or nature!) discretizes
the elastic solid. For coarse discretization, lattice pin-
ning occurs so that instabilities become unavoidable [30],
which in turn lead to Coulomb friction. However, at
fine discretization, the discretization points, or “atoms”,
move continuously at all times under adiabatic driving
and Stokes damping arises automatically. Power-law scal-
ing of the damping force would only be expected down to
infinitesimal small velocities right at the critical point (in
the absence of thermal noise) separating the Stokes from
the Coulomb regime [31]. There will still be extended ve-
locity regimes, in which sub-linear small-velocity correc-
tions to either G(v) or F (v) arise even if G(v)−G(0) and
thus F (v) − F (0) ultimately cross over to Stokes, when-
ever 1/

√
r stress singularity near crack tips extends down

to small but not atomic scales. It can also be noticed that
the transition between linear and non-linear velocity de-
pendence occurs at a crack tip velocity of v = 0.1, which
is the velocity above which the elastic stress starts to de-
viate appreciably from the interfacial stress, as is revealed
in fig. 4(c).
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Fig. 3: Relative pull-off force increase, Fp(v)/Fp(0) − 1, as
a function of crack speed velocity v for (a) fixed E1/E0 =
100 and varying radius of curvature R0 and (b) fixed R0 = 1
and varying E1/E0. Symbols and lines reflect simulation and
theoretical results, respectively. Blue dashed lines reflect upper
bounds to Fp. The inset in panel (b) shows the ratio G(v)/G0.

Differences between Persson-Brener theory and simula-
tions reach 30% at intermediate velocities and decrease
again for large tip radii at large v, where the viscoelas-
tic fracture energy factor G(v)/G0 plateaus close to the
predicted value of E1/E0. The latter ratio can be directly
deduced from the theory by considering eq. (8) in the limit
v → ∞ and inserting the result, qc(v)/q0 = E0/E1, into
eq. (5). A good agreement between theory and simulations
is revealed particularly in the inset of fig. 3(b) for the two
smaller E1/E0 ratios. This close match is an interesting
result in its own right, also because the theory assumes
steady-state crack propagation, while in reality, the crack
tip speed is not constant at fixed pull-off velocity. More-
over, even better agreement must be expected for systems
with a broad distribution of relaxation times, as the sharp-
wavenumber-cutoff approximation in the Persson-Brener
approach should be most inaccurate for the three-element
model with a single relaxation time.

Theory and simulation differ significantly in fig. 3 for
small tip radii when v and E1/E0 are both large. This
is due to the transition of the failure mode from crack
propagation to quasi-uniform bond breaking, which was
proposed to occur at small scales [19,20]. The argument
for the phenomenon is that the tensile load in a finite
contact should be roughly limited by the product of the
maximum tensile stress and the contact width w. In
fact, the dashed lines reflecting this estimate match the
large-velocity limit for the R0 = 1, E1/E0 = 100 system
quite well if the value for w is the one observed in the
simulations at the moment of maximum tensile force.

The suggested quasi-uniform bond breaking is also
borne out from the displacement fields shown in fig. 4(a):
at large vp, the R0 = 64 contact evidently fails by crack
propagation while the displacement field moves almost ho-
mogeneously during failure for R0 = 1. Specifically, for

0 0.5 1 1.5 2
2 x / w

-0.4

-0.2

0.0

0.2

0.4

u(
x)

 R
0 / 
ρ 02

R
0
 = 64

R
0
 =   1

t = 0

t
max

t
rup

t = 0

t
max

t
rup

0 0.5 1 1.5 2
2 x / w

-1.5

-1.0

-0.5

0.0

0.5(a)

v
p
 = 200

(b)
t = 0

t
max

t
rup

R
0
 >> 1

v
p
 <<  1

0 0.04 0.08 0.12 0.16
d

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F

10
-4

10
-3

10
-2

10
-1

10
0

10
1

v
p

0.00

0.01

0.02

0.03

W

v
p
 = 2

0.4

0.28

0.2
0.14

0.06

0.002

(c) (d)

Fig. 4: (a) Displacement fields in static equilibrium at zero
applied force (t = 0), when the tensile force is maximum
(t = tmax), and at the moment of final rupture t = trup in the
limit of large velocities for contact radii R0 = 64 (red curves)
and R0 = 1 (blue curves). (b) Similar as (a) but for small
pulling velocities and large R0. (c) Force-displacement curves
at different velocities for the R0 = 1 tip and (d) its velocity-
dependent work of separation W .

R0 = 1, contact is already lost at r = 0 when the tensile
force reaches its maximum, while, for R0 = 64, there is
still contact near the origin directly after the moment of
final rupture, which we define as the point in time right
at which the tensile-load displacement curve assumes its
most negative slope. At small velocities, all contacts stud-
ied here break in a similar way as shown for large R0 in
fig. 4(b). This is because the Tabor parameter is greater
than unity even for R0 = 1, i.e., μT(R0 = 1) ≈ 4 so that
the adiabatic tip retraction is close to the short-range-
adhesion continuum limit [32,33].

The blue, dashed lines in fig. 3 also reveal that the slope
of the critical width w(v), defined as the width of the con-
tact at the moment of maximum force, changes discontin-
uously at a certain crack tip velocity, which, however, is
unrelated to the transition in the failure mode. Similar
discontinuities in ∂w(v)/∂v occur for all investigated sys-
tems. As no theory apparently predicts this transition to
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occur, all currently existing analytical approaches to the
crack tip problem could be argued to be approximate.

To further illuminate the pull-off dynamics, fig. 4(c)
shows various load displacement curves F (d) for R0 = 1.
Their shape changes indeed abruptly near vp = 0.2, for
which F (d) has a very flat maximum. At that pull-off
velocity, dmax —the vertical distance moved to reach the
maximum force— changes quite quickly from a value of
order dmax(v → 0) ≈ 0.08 by one decade to dmax(v →
∞) ≈ gc/2, where the CZM assumes its maximum tensile
stress.

Owing to the small forces needed to separate surfaces
adiabatically and the small dmax needed to break the con-
tact at large vp, the work of separation W turns out small
in both limits. In between, viscous dissipation is largest
leading to a pronounced maximum in W , which is shown
in fig. 4(d). It can be said to arise, because a tensile force
close to Fp(v → ∞)/2 acts over relatively large pulling
distances.

Work of adhesion in selected two-dimensional
contact problems. – Maxima in the work of separation
at intermediate pulling velocities also occur for contact
geometries other than cylinders, in particular for two-
dimensional interfaces lacking the logarithmic system size
corrections to W of line contacts. This will be discussed
qualitatively for a flat, circular punch and numerically for
a Hertzian contact.

For a flat punch with radius ρ0 interacting through
small-range adhesion, the contact area remains unchanged
until the tensile force reaches its maximum, at which
point an unstable crack starts propagating. For elastic
solids, the force-distance relation reads d = F/(2 ρ0 E

∗),
while the pull-off force is given by Fp =

√
8π E∗ Δγ ρ30.

Thus, in the adiabatic case, the work of separation, W =∫ Fp

0
dF d(F ) = 2Δγ, does not depend on E∗. As a con-

sequence, the result of this calculation does not change
when replacing the low- with the high-frequency modulus
so that W turns out identical in the limits v → 0 and
v → ∞. Since W (v) evaluated at slightly positive v au-
tomatically exceeds W (0), there must be a maximum in
the work of separation between the limits of infinitesimally
small and infinitely large velocity. The correctness of this
conclusion was validated numerically.

We also considered a Hertzian contact geometry. The
system was modeled numerically with the following pa-
rameters: R0 = 1, E∗ = 1, τ = 1, E1/E0 = 100,
Δγ = 2 · 10−4, gc = 1.473 · 10−3. With these choices,
μT ≈ 2. The pull-off force can be calculated with the well-
known solution by Johnson-Kendall-Roberts (JKR) [34],
which was also used to determine numerically the adia-
batic work of separation for v = 0. Results are shown in
fig. 5.

As was the case for the cylinder, the work of separation
is slightly enhanced for v → ∞ compared to its adiabatic
value W (0). At small velocities, we find an enhancement
of both Fp and W (v), compared to their adiabatic values,

10
-3

10
-2

F
p

10
-4

10
-3

10
-2

10
-1

10
0

v
p

0

20

40

60

10
6 

W

JKR limit

JKR limit

F
p
(0) + const v

p

1/2

W(0) + const v
p

1/2

(a)

(b)

Fig. 5: (a) Pull-off force Fp and (b) work of separation W , both
times as a function of pulling velocity vp for a regular Hertzian
tip. Adiabatic results from the JKR solution are included for
comparison (dashed black lines) as well as fits (dashed brown
lines).

which scales roughly with
√
vp. For these “two- plus one-

dimensional” contacts, we did not manage to approach
the linear response regime. Also note that the JKR limits
will not be approached exactly for v → 0, since the Tabor
parameter of the investigated system was finite.

Discussion. – The maximum in the work of separa-
tion W might appear counterintuitive, since the entire
initial contact area must be broken and the energy re-
lease rate G(v) increases monotonically with crack tip ve-
locity v. However, the contact area at the moment of
pull-off decreases with increasing pulling velocity. Near
that moment, crack propagation becomes unstable and
the viscoelastic-crack-propagation theory is not applica-
ble, not even approximately. Breaking interfacial bonds
no longer necessitates external energy supply.

Our calculation of the work of separation does not in-
clude the energy loss due to the (visco)elastic coupling
between the center-of-mass mode of the elastomer’s sur-
face facing the indenter and its other surface, which is
typically driven in laboratory experiments. However, only
the work of separation due to finite q is dissipated in the
vicinity of the contact so that we expect pull-off–induced
near-surface heating to be largest at intermediate veloc-
ities. This effect should also hold for interfaces that are
more complex than the one investigated in this work. For
example, the product of maximum stress and the time
during which nerves in the vicinity of hair roots are ex-
posed to large forces should be maximal at intermediate
pull-off velocities, which might explain the relatively large
pain that is experienced when a bandage is pulled off at
an intermediate velocity.
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[33] Müser M. H., Beilstein J. Nanotechnol., 5 (2014)

419.
[34] Johnson K. L., Kendall K. and Roberts A. D., Proc.

R. Soc. A, 324 (1971) 301.

36004-p7


